Fibonacci sequences

Joshua DuMont


The Fibonacci sequence is defined by fn = fn-1+ fn-2, f0 = 1, f1= 1. We could just as easily talk about the sequence where we add the two previous terms to get the next term and start with different initial conditions. A table giving the first 30 terms of three of these sequences is shown along with the ratios of successive terms.

n

fn

gn

hn

0

0

4

5

1

1

7

34

2

1

1

11

1.57142857

39

1.14705882

3

2

2

18

1.63636364

73

1.87179487

4

3

1.5

29

1.61111111

112

1.53424658

5

5

1.66666667

47

1.62068966

185

1.65178571

6

8

1.6

76

1.61702128

297

1.60540541

7

13

1.625

123

1.61842105

482

1.62289562

8

21

1.61538462

199

1.61788618

779

1.61618257

9

34

1.61904762

322

1.61809045

1261

1.61874198

10

55

1.61764706

521

1.61801242

2040

1.61776368

11

89

1.61818182

843

1.61804223

3301

1.61813725

12

144

1.61797753

1364

1.61803084

5341

1.61799455

13

233

1.61805556

2207

1.61803519

8642

1.61804905

14

377

1.61802575

3571

1.61803353

13983

1.61802823

15

610

1.61803714

5778

1.61803416

22625

1.61803619

16

987

1.61803279

9349

1.61803392

36608

1.61803315

17

1597

1.61803445

15127

1.61803401

59233

1.61803431

18

2584

1.61803381

24476

1.61803398

95841

1.61803387

19

4181

1.61803406

39603

1.61803399

155074

1.61803404

20

6765

1.61803396

64079

1.61803399

250915

1.61803397

21

10946

1.618034

103682

1.61803399

405989

1.618034

22

17711

1.61803399

167761

1.61803399

656904

1.61803399

23

28657

1.61803399

271443

1.61803399

1062893

1.61803399

24

46368

1.61803399

439204

1.61803399

1719797

1.61803399

25

75025

1.61803399

710647

1.61803399

2782690

1.61803399

26

121393

1.61803399

1149851

1.61803399

4502487

1.61803399

27

196418

1.61803399

1860498

1.61803399

7285177

1.61803399

28

317811

1.61803399

3010349

1.61803399

11787664

1.61803399

29

514229

1.61803399

4870847

1.61803399

19072841

1.61803399

Notice that the ratio of a term to the previous term seems to approach a particular value, and that that value is the same for all three sets of initial conditions.

Define

This means = Φ since we have our recursive formula for fn.

We can rearrange and say that as :

fn-1+fn-2= Φ *fn-1

fn-2= Φ *fn-1- fn-1

fn-2=( Φ - 1)*fn-1

=fn-1

=

As , =.

We can conclude that:

Φ =

Φ *( Φ - 1)=1

Φ 2- Φ -1=0

Φ =  ≈1.618

{Note Φ = is unreasonable as the terms in sequence will be positive}

This process did not involve the initial conditions f0 and f1, so it will be the same for different choices for the first two terms.

 

We could also consider ratios of every second term or third term etc.

n

fn

0

0

1

1

2

1

1

3

2

2

2

4

3

1.5

3

3

5

5

1.66666667

2.5

5

5

6

8

1.6

2.66666667

4

8

7

13

1.625

2.6

4.33333333

6.5

8

21

1.61538462

2.625

4.2

7

9

34

1.61904762

2.61538462

4.25

6.8

10

55

1.61764706

2.61904762

4.23076923

6.875

11

89

1.61818182

2.61764706

4.23809524

6.84615385

12

144

1.61797753

2.61818182

4.23529412

6.85714286

13

233

1.61805556

2.61797753

4.23636364

6.85294118

14

377

1.61802575

2.61805556

4.23595506

6.85454545

15

610

1.61803714

2.61802575

4.23611111

6.85393258

16

987

1.61803279

2.61803714

4.2360515

6.85416667

17

1597

1.61803445

2.61803279

4.23607427

6.85407725

18

2584

1.61803381

2.61803445

4.23606557

6.85411141

19

4181

1.61803406

2.61803381

4.2360689

6.85409836

20

6765

1.61803396

2.61803406

4.23606763

6.85410334

21

10946

1.618034

2.61803396

4.23606811

6.85410144

22

17711

1.61803399

2.618034

4.23606793

6.85410217

23

28657

1.61803399

2.61803399

4.236068

6.85410189

24

46368

1.61803399

2.61803399

4.23606797

6.854102

25

75025

1.61803399

2.61803399

4.23606798

6.85410196

26

121393

1.61803399

2.61803399

4.23606798

6.85410197

27

196418

1.61803399

2.61803399

4.23606798

6.85410196

28

317811

1.61803399

2.61803399

4.23606798

6.85410197

29

514229

1.61803399

2.61803399

4.23606798

6.85410197

 

These also seem to have limits. More than that it seems that the limits have the same pattern as the Fibonacci sequence itself. We guess that:

=+

By our recursive formula for fn, =

Since the values n-1 and n-k, and the values n and n-(k-1) are the same distance apart we can say that in the limits:

=.

= for similar reasons.

So, =+  as we guessed.