Fibonacci sequences
Joshua DuMont
The
Fibonacci sequence is defined by fn = fn-1+ fn-2,
f0 = 1, f1= 1. We could just as easily talk about the
sequence where we add the two previous terms to get the next term and start
with different initial conditions. A table giving the first 30 terms of three
of these sequences is shown along with the ratios of successive terms.
n |
fn |
|
gn |
|
hn |
|
0 |
0 |
4 |
5 |
|||
1 |
1 |
7 |
34 |
|||
2 |
1 |
1 |
11 |
1.57142857 |
39 |
1.14705882 |
3 |
2 |
2 |
18 |
1.63636364 |
73 |
1.87179487 |
4 |
3 |
1.5 |
29 |
1.61111111 |
112 |
1.53424658 |
5 |
5 |
1.66666667 |
47 |
1.62068966 |
185 |
1.65178571 |
6 |
8 |
1.6 |
76 |
1.61702128 |
297 |
1.60540541 |
7 |
13 |
1.625 |
123 |
1.61842105 |
482 |
1.62289562 |
8 |
21 |
1.61538462 |
199 |
1.61788618 |
779 |
1.61618257 |
9 |
34 |
1.61904762 |
322 |
1.61809045 |
1261 |
1.61874198 |
10 |
55 |
1.61764706 |
521 |
1.61801242 |
2040 |
1.61776368 |
11 |
89 |
1.61818182 |
843 |
1.61804223 |
3301 |
1.61813725 |
12 |
144 |
1.61797753 |
1364 |
1.61803084 |
5341 |
1.61799455 |
13 |
233 |
1.61805556 |
2207 |
1.61803519 |
8642 |
1.61804905 |
14 |
377 |
1.61802575 |
3571 |
1.61803353 |
13983 |
1.61802823 |
15 |
610 |
1.61803714 |
5778 |
1.61803416 |
22625 |
1.61803619 |
16 |
987 |
1.61803279 |
9349 |
1.61803392 |
36608 |
1.61803315 |
17 |
1597 |
1.61803445 |
15127 |
1.61803401 |
59233 |
1.61803431 |
18 |
2584 |
1.61803381 |
24476 |
1.61803398 |
95841 |
1.61803387 |
19 |
4181 |
1.61803406 |
39603 |
1.61803399 |
155074 |
1.61803404 |
20 |
6765 |
1.61803396 |
64079 |
1.61803399 |
250915 |
1.61803397 |
21 |
10946 |
1.618034 |
103682 |
1.61803399 |
405989 |
1.618034 |
22 |
17711 |
1.61803399 |
167761 |
1.61803399 |
656904 |
1.61803399 |
23 |
28657 |
1.61803399 |
271443 |
1.61803399 |
1062893 |
1.61803399 |
24 |
46368 |
1.61803399 |
439204 |
1.61803399 |
1719797 |
1.61803399 |
25 |
75025 |
1.61803399 |
710647 |
1.61803399 |
2782690 |
1.61803399 |
26 |
121393 |
1.61803399 |
1149851 |
1.61803399 |
4502487 |
1.61803399 |
27 |
196418 |
1.61803399 |
1860498 |
1.61803399 |
7285177 |
1.61803399 |
28 |
317811 |
1.61803399 |
3010349 |
1.61803399 |
11787664 |
1.61803399 |
29 |
514229 |
1.61803399 |
4870847 |
1.61803399 |
19072841 |
1.61803399 |
Notice
that the ratio of a term to the previous term seems to approach a particular
value, and that that value is the same for all three sets of initial conditions.
Define
=Φ
This
means = Φ
since we have our recursive formula for fn.
We
can rearrange and say that as :
fn-1+fn-2=
Φ *fn-1
fn-2= Φ
*fn-1- fn-1
fn-2=( Φ
- 1)*fn-1
=fn-1
=
As
, =.
We
can conclude that:
Φ
=
Φ
*( Φ - 1)=1
Φ
2- Φ -1=0
Φ
= ≈1.618
{Note
Φ = is unreasonable as the terms
in sequence will be positive}
This
process did not involve the initial conditions f0 and f1,
so it will be the same for different choices for the first two terms.
We
could also consider ratios of every second term or third term etc.
n |
fn |
|
|
|
|
0 |
0 |
||||
1 |
1 |
||||
2 |
1 |
1 |
|||
3 |
2 |
2 |
2 |
||
4 |
3 |
1.5 |
3 |
3 |
|
5 |
5 |
1.66666667 |
2.5 |
5 |
5 |
6 |
8 |
1.6 |
2.66666667 |
4 |
8 |
7 |
13 |
1.625 |
2.6 |
4.33333333 |
6.5 |
8 |
21 |
1.61538462 |
2.625 |
4.2 |
7 |
9 |
34 |
1.61904762 |
2.61538462 |
4.25 |
6.8 |
10 |
55 |
1.61764706 |
2.61904762 |
4.23076923 |
6.875 |
11 |
89 |
1.61818182 |
2.61764706 |
4.23809524 |
6.84615385 |
12 |
144 |
1.61797753 |
2.61818182 |
4.23529412 |
6.85714286 |
13 |
233 |
1.61805556 |
2.61797753 |
4.23636364 |
6.85294118 |
14 |
377 |
1.61802575 |
2.61805556 |
4.23595506 |
6.85454545 |
15 |
610 |
1.61803714 |
2.61802575 |
4.23611111 |
6.85393258 |
16 |
987 |
1.61803279 |
2.61803714 |
4.2360515 |
6.85416667 |
17 |
1597 |
1.61803445 |
2.61803279 |
4.23607427 |
6.85407725 |
18 |
2584 |
1.61803381 |
2.61803445 |
4.23606557 |
6.85411141 |
19 |
4181 |
1.61803406 |
2.61803381 |
4.2360689 |
6.85409836 |
20 |
6765 |
1.61803396 |
2.61803406 |
4.23606763 |
6.85410334 |
21 |
10946 |
1.618034 |
2.61803396 |
4.23606811 |
6.85410144 |
22 |
17711 |
1.61803399 |
2.618034 |
4.23606793 |
6.85410217 |
23 |
28657 |
1.61803399 |
2.61803399 |
4.236068 |
6.85410189 |
24 |
46368 |
1.61803399 |
2.61803399 |
4.23606797 |
6.854102 |
25 |
75025 |
1.61803399 |
2.61803399 |
4.23606798 |
6.85410196 |
26 |
121393 |
1.61803399 |
2.61803399 |
4.23606798 |
6.85410197 |
27 |
196418 |
1.61803399 |
2.61803399 |
4.23606798 |
6.85410196 |
28 |
317811 |
1.61803399 |
2.61803399 |
4.23606798 |
6.85410197 |
29 |
514229 |
1.61803399 |
2.61803399 |
4.23606798 |
6.85410197 |
These
also seem to have limits. More than that it seems that the limits have the same
pattern as the Fibonacci sequence itself. We guess that:
=+
By our recursive formula for fn,
=
Since the values n-1 and n-k, and the values n and n-(k-1) are the
same distance apart we can say that in the limits:
=.
= for similar reasons.
So, =+ as we guessed.